§60.612 ## §60.612 Standards. Each owner or operator of any affected facility shall comply with paragraph (a), (b), or (c) of this section for each vent stream on and after the date on which the initial performance test required by §§60.8 and 60.614 is completed, but not later than 60 days after achieving the maximum production rate at which the affected facility will be operated, or 180 days after the initial start-up, whichever date comes first. Each owner or operator shall either: - (a) Reduce emissions of TOC (minus methane and ethane) by 98 weight-percent, or to a TOC (minus methane and ethane) concentration of 20 ppmv on a dry basis corrected to 3 percent oxygen, whichever is less stringent. If a boiler or process heater is used to comply with this paragraph, then the vent stream shall be introduced into the flame zone of the boiler or process heater; or - (b) Combust the emissions in a flare that meets the requirements of §60.18; - (c) Maintain a TRE index value greater than 1.0 without use of VOC emission control devices. ## § 60.613 Monitoring of emissions and operations. - (a) The owner or operator of an affected facility that uses an incinerator to seek to comply with the TOC emission limit specified under §60.612(a) shall install, calibrate, maintain, and operate according to manufacturer's specifications the following equipment: - (1) A temperature monitoring device equipped with a continuous recorder and having an accuracy of ±1 percent of the temperature being monitored expressed in degrees Celsius or ±0.5 °C, whichever is greater. - (i) Where an incinerator other than a catalytic incinerator is used, a temperature monitoring device shall be installed in the firebox. - (ii) Where a catalytic incinerator is used, temperature monitoring devices shall be installed in the gas stream immediately before and after the catalyst bed. - (2) A flow indicator that provides a record of vent stream flow to the incinerator at least once every hour for each affected facility. The flow indicator shall be installed in the vent stream from each affected facility at a point closest to the inlet of each incinerator and before being joined with any other vent stream. - (b) The owner or operator of an affected facility that uses a flare to seek to comply with §60.612(b) shall install, calibrate, maintain, and operate according to manufacturer's specifications the following equipment: - (1) A heat sensing device, such as an ultra-violet sensor or thermocouple, at the pilot light to indicate the continuous presence of a flame. - (2) A flow indicator that provides a record of vent stream flow to the flare at least once every hour for each affected facility. The flow indicator shall be installed in the vent stream from each affected facility at a point closest to the flare and before being joined with any other vent stream. - (c) The owner or operator of an affected facility that uses a boiler or process heater to seek to comply with §60.612(a) shall install, calibrate, maintain and operate according to the manufacturer's specifications the following equipment: - (1) A flow indicator that provides a record of vent stream flow to the boiler or process heater at least once every hour for each affected facility. The flow indicator shall be installed in the vent stream from each air oxidation reactor within an affected facility at a point closest to the inlet of each boiler or process heater and before being joined with any other vent stream. - (2) A temperature monitoring device in the firebox equipped with a continuous recorder and having an accuracy of ±1 percent of the temperature being measured expressed in degrees Celsius or ±0.5 °C, whichever is greater, for boilers or process heaters of less than 44 MW (150 million Btu/hr) heat input design capacity. - (d) Monitor and record the periods of operation of the boiler or process heater if the design input capacity of the boiler is 44 MW (150 million Btu/hr) or greater. The records must be readily available for inspection. - (e) The owner or operator of an affected facility that seeks to demonstrate compliance with the TRE index value limit specified under §60.612(c) shall install, calibrate, maintain, and operate according to manufacturer's specifications the following equipment, unless alternative monitoring procedures or requirements are approved for that facility by the Administrator: - (1) Where an absorber is the final recovery device in a recovery system: - (i) A scrubbing liquid temperature monitoring device having an accuracy of ±1 percent of the temperature being monitored expressed in degrees Celsius or 0.5 °C, whichever is greater, and a specific gravity monitoring device having an accuracy of 0.02 specific gravity units, each equipped with a continuous recorder; - (ii) An organic monitoring device used to indicate the concentration level of organic compounds exiting the recovery device based on a detection principle such as infra-red, photoionization, or thermal conductivity, each equipped with a continuous recorder. - (2) Where a condenser is the final recovery device in a recovery system: - (i) A condenser exit (product side) temperature monitoring device equipped with a continuous recorder and having an acuracy of ±1 percent of the temperature being monitored expressed in degrees Celsius or 0.5 °C, whichever is greater; - (ii) An organic monitoring device used to indicate the concentration level of organic compounds exiting the recovery device based on a detection principle such as infra-red, photoionization, or thermal conductivity, each equipped with a continuous recorder. - (3) Where a carbon adsorber is the final recovery device in a recovery system: - (i) An integrating steam flow monitoring device having an accuracy of 10 percent, and a carbon bed temperature monitoring device having an accuracy of ± 1 percent of the temperature being monitored expressed in degrees Celsius or ± 0.5 °C, whichever is greater, both equipped with a continuous recorder; - (ii) An organic monitoring device used to indicate the concentration level of organic compounds exiting the recovery device based on a detection principle such as infra-red, photoionization, or thermal conductivity, each equipped with a continuous recorder. (f) An owner or operator of an affected facility seeking to demonstrate compliance with the standards specified under §60.612 with control devices other than an incinerator, boiler, process heater, or flare; or recovery devices other than an absorber, condenser, or carbon adsorber shall provide to the Administrator information describing the operation of the control device or recovery device and the process parameter(s) which would indicate proper operation and maintenance of the device. The Administrator may request further information and will specify appropriate monitoring procedures or reauirements. $[55~{\rm FR}~26922,~{\rm June}~29,~1990,~{\rm as~amended}~{\rm at}~65~{\rm FR}~61769,~{\rm Oct.}~17,~2000]$ ## $\S 60.614$ Test methods and procedures. - (a) For the purpose of demonstrating compliance with §60.612, all affected facilities shall be run at full operating conditions and flow rates during any performance test. - (b) The following methods in appendix A to this part, except as provided under §60.8(b) shall be used as reference methods to determine compliance with the emission limit or percent reduction efficiency specified under §60.612(a). - (1) Method 1 or 1A, as appropriate, for selection of the sampling sites. The control device inlet sampling site for determination of vent stream molar composition or TOC (less methane and ethane) reduction efficiency shall be prior to the inlet of the control device and after the recovery system. - (2) Method 2, 2A, 2C, or 2D, as appropriate, for determination of the volumetric flow rates. - (3) The emission rate correction factor, integrated sampling and analysis procedure of Method 3 shall be used to determine the oxygen concentration ($\%\text{O}_{2d}$) for the purposes of determining compliance with the 20 ppmv limit. The sampling site shall be the same as that of the TOC samples and the samples shall be taken during the same time that the TOC samples are taken. The TOC concentration corrected to 3